If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8y^2+28y+8=0
a = 8; b = 28; c = +8;
Δ = b2-4ac
Δ = 282-4·8·8
Δ = 528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{528}=\sqrt{16*33}=\sqrt{16}*\sqrt{33}=4\sqrt{33}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28)-4\sqrt{33}}{2*8}=\frac{-28-4\sqrt{33}}{16} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28)+4\sqrt{33}}{2*8}=\frac{-28+4\sqrt{33}}{16} $
| 8=1/2(-y-1 | | 0=4x+5-3x | | 10x-40=4x+10 | | 110-70-23x-14x=180 | | 5m-20=40 | | 16*x=176 | | 16+20u=19u | | 24x=2x+924x=2x+9. | | 4/7=10/y | | 10x+40+4x+10=180 | | +8=12.a= | | 2x3+6x2-4x=0 | | n/2-300=5000 | | 4/7=10/z | | 42x-18=-6x+8 | | 12-d÷23=19 | | 8+x=8-5x | | 4x-40=4x+10 | | -8p-(-5p)=9 | | g/10+45=48 | | 10n+26=14n-10 | | 0.2(x-0.3)=-2.5 | | n/4-5=12 | | 19.9=9y-8.y= | | f/8-2=3 | | 10c+14=54 | | x+1341=4 | | y^2-28y+26=0 | | -26x+2x=-52+16x | | n/3-5=14 | | 43425-325x=x | | (12-d)÷23=19 |